

AFRL-RI-RS-TR-2008-205
Final Technical Report
July 2008

DEVELOPMENT OF ENHANCED INTERACTIVE
DATAWALLS FOR DATA FUSION AND
COLLABORATION

University of Alabama

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Public
Affairs Office and is available to the general public, including foreign nationals. Copies
may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2008-205 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

ALEX SARNACKI JAMES W. CUSACK, Chief
Work Unit Manager Information Systems Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JULY 2008
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

Mar 04 – May 08
4. TITLE AND SUBTITLE

DEVELOPMENT OF ENHANCED INTERACTIVE DATAWALLS FOR
DATA FUSION AND COLLABORATION

5a. CONTRACT NUMBER
FA8750-04-C-0067

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
69329W

6. AUTHOR(S)

Jingyuan Zhang

5d. PROJECT NUMBER
NASA

5e. TASK NUMBER
BA

5f. WORK UNIT NUMBER
02

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Alabama
Office for Sponsored Programs
801 University Blvd.
Tuscaloosa, AL 35487-0104

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/RISB
525 Brooks Rd
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
AFRL/RISB

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2008-205

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# WPAFB 08-4183

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Develop interactive display technology for multiple users to collaborate and manage information through a high resolution extended
display Datawall using the applications they are familiar with.

15. SUBJECT TERMS
Datawall, Collaboration, Multi-user, Interactive, Display, Multi-cursor, Multiple User, Multiple Cursor

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

47

19a. NAME OF RESPONSIBLE PERSON
Alex Sarnacki

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
315-330-4985

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Table of Contents

 1. Introduction …………..………...………….………….………………....... 1
 2. VNC-based Approach …….……………….………..……….………......... 1
 2.1 VNC Basics …………...…………………….………….………... 1
 2.2 Modifications to VNC 4.0 for Application Sharing…....….......4
 2.3 Visitor and Local Modes for Application Sharing …........…….....6
 2.4 Reverse Connection in VNC ……….………………..…….......... 9
 2.5 VNC for Unix ……….………………………..……..……......... 10
 3. Mirror-driver-based Approach ……………………….………….…......... 13
 3.1 Mirror Driver ……………………………..…………………..... 14
 3.2 Forwarder and Executor ….………………………………….… 16
 3.3 Reverse Use of Mirror Driver ……………………………….…. 19
 4. Laser Pointers as Input Devices to DataWall ……..……….………......... 23
 4.1 States of Laser Software ……………………….……..………... 23
 4.2 Communication between Laser Server and Client …………...... 24
 4.3 Digital Cameras for Tracking Laser Pointers …....…………...... 26
 4.4 User Interface for Laser Software ……………………….……... 28
 4.5 Soft Keyboard for Text Entry …………………………...……... 31
 5. Multiple Computer Interaction and Annotation ………………………..... 32
 5.1 Mouse Filter Driver ……………………….…………..………... 33
 5.2 Mouse Event Acquisition …………………………..…............... 35
 5.3 Interaction and Annotation ………...…..………….………….... 36
 6. Copy and Paste between Two Computers ……………………...….......... 38
 6.1 Keep Clipboard with Software Cursor …….………….……….. 38
 6.2 Copy Files between Two Computers ……...…………….…....... 40
 6.3 Simple File Transfer Protocol …....………..………….……....... 41

i

List of Figures

Figure 2.1 The pixel flow among 4 pixel buffers in the VNC…………………………....4
Figure 2.2 Selection of an application at the computer for sharing……………………….6
Figure 2.3 A task box in the visitor mode………………………………………………...7
Figure 2.4 A task box in the local mode……………………………………………….….7
Figure 2.5 The communications among three main VNC programs…………………….10
Figure 2.6 An X desktop on a Windows platform…………………………………….....13
Figure 3.1 The architecture of the mirror-driver based system……………………….....14
 Figure 3.2 The flow of the image update from the remote machine
 to the DataWall……………………………………………………………....18
Figure 3.3 Executor can run on the DataWall or a control computer…………………....19
Figure 3.4 Switch between the window and full-screen modes………………………....20
Figure 3.5.a The executor in the red W state…………………………………………….21
Figure 3.5.b The state control box……………………………………………………….21
Figure 3.6 The software cursors managed by the Laser client…………………………..22
Figure 4.1 The new camera system installed in a portable DataWall…………………...26
Figure 4.2 The interaction and synchronization among different threads……………....28
Figure 4.3 The pop-up menu for the Laser server…………………………………….....28
Figure 4.4 Camera check………………………………………………………………..29
Figure 4.5 Camera configuration………………………………………………………..30
Figure 4.6 The image after a successful camera calibration…………………………….31
Figure 4.7 A soft keyboard for use with a laser pointer………………………………...31
 Figure 5.1 Mouse filter driver for multiple computer interaction
 And annotation………………………………………………………………33
Figure 5.2 The filter driver with two device objects……………………………………34

 Figure 5.3 A screen shot of the installed mouse filter driver with
 two device objects…………………………………………………………..34
Figure 6.1 Three software cursors with three different clipboards……………………..39
Figure 6.2 The data structure for cursor clipboards…………………………………….40

ii

1. Introduction

A command and control room can consist of wall-sized computers, referred to as
DataWalls hereafter, for group use as well as desktops/laptops for individual use.
Information sharing among these computers and easy interaction with these computers
are two crucial issues in such an environment. In this project, a suite of software has been
developed to address these two issues. Specifically

• A user can move an application from one computer to another for viewing and

interaction. Both VNC(Virtual Network Computing)-based and mirror-driver-
based approaches are used to implement this functionality.

• A user can interact with a DataWall using camera-tracked laser pointers.
• A user can move a cursor from one computer to another for multiple computer

interaction and annotation.
• A user can perform copy and paste operations between two computers.

In this report, we will detail how these functions are implemented.

2. VNC-based Approach

VNC (Virtual Network Computing) was developed by a group of researchers at
AT&T Laboratories in Cambridge, UK. It is open-source software. VNC allows a user to
view and interact with a remote computer (known as the VNC server) from a local
computer (known as the VNC viewer/client). We use VNC to display multiple remote
desktops on the DataWall. We start with the original VNC for desktop sharing. We then
modified it for application sharing.

2.1 VNC Basics

The VNC 4.0 server can be started in user mode or service mode. Regardless of the
starting node, it ends up starting a new process that runs winvnc4.exe compiled from
winvnc.cxx. In the main function of winvnc.cxx, a variable server of type
VNCServerWin32 is defined, and its run function is executed. In the VNCServerWin32’s
run function, an instance rfb of class ManagedListener is created and its setPort function
is executed. In the ManagedListener’s setPort function, a new instance of TcpListener is
created based on the port number. (In the TcpListener’s constructor, the necessary socket,
bind, and listen functions are called. The WSAStartup function is called by
network::TcpSocket::initTcpSockets in the main function.) The newly created
TcpListener instance, thereafter referred to as the listener socket, is added to sockMgr of
type SocketManager in VNCServerWin32 using the addListener function. That is the first
socket added to sockMgr. (Later, whenever a client is connected to the server, a new
socket, referred to as a client socket, will be added to sockMgr by using the addSocket
function.)

1

All the sockets in sockMgr are monitored by the getMessage function of
SocketManager through their corresponding events. In fact, the getMessage function does
all the monitoring jobs. In addition to monitoring all the sockets, getMessage also
monitors whether the server desktop has changed via its updateEvent (added to sockMgr
using the addEvent function in the VNCServerWin32 constructor) and checks all the
window messages in the queue as specified by QS_ALLINPUT in
MsgWaitForMultipleObjects. If the window message is WM_QUIT, it returns false. For
the other types of window messages, it returns the message as one of its parameters.

If there is an FD_READ (or FD_CLOSE) network event on a client socket, the

getMessage function of SocketManager calls the VNCServerST’s processSocketEvent
function which first finds the corresponding client of type VNCSConnectionST in its
clients list (This is needed because the software does not take advantage of the one-to-one
relationship between a client and a socket.) and then calls the VNCSConnectionST’s
processMessages function. The processMessages calls the processMsg which will
process the incoming message based on the current state and the RFB protocol. The
specific code is listed below. The first four cases are for the initial handshaking, and the
last case is for the normal communication after authentication.

switch (state_) {
case RFBSTATE_PROTOCOL_VERSION: processVersionMsg(); break;
case RFBSTATE_SECURITY_TYPE: processSecurityTypeMsg(); break;
case RFBSTATE_SECURITY: processSecurityMsg(); break;
case RFBSTATE_INITIALISATION: processInitMsg(); break;
case RFBSTATE_NORMAL: reader_->readMsg(); break;
}

If an FD_ACCEPT (or FD_CLOSE) network event is identified on a listener socket

in getMessage, getMessage calls the accept function to accept the connection from a new
client, and adds the newly created client socket to sockMgr by using the addSocket
function. At the same time, a new client of type VNCSConnectionST, corresponding to
the newly created client socket, is added to the clients list of VNCServerST by the
addClient function. The addClient function also calls VNCSConnectionST’s init function
which calls the initialiseProtocol function to send the server version to the client and to
set its state to RFBSTATE_PROTOCOL_VERSION. The initial handshaking will follow as
specified in the above switch statement.

When a client is authenticated successfully, the authSuccess function of
VNCSConnectionST will be called. If it is the first client, the desktop of type SDisplay in
VNCServerWin32 will be started by calling the start function. The start function calls
WMHooks’ setUpdateTracker function. The setUpdateTracker function calls the global
addHook function which, in turn, calls the global StartHookThread function. In the
StartHookThread function, a thread called the hook owner thread of type
WMHooksThread is created and the global WM_Hooks_Install function is called to install
three hooks: HookCallWndProc for WH_CALLWNDPROC (responding to the messages

2

sent to a window), HookGetMessage for WH_GETMESSAGE (responding to the
messages posted to a message queue), and HookDialogMessage for
WH_SYSMSGFILTER (responding to the messages generated as a result of an input event
in a dialog box, message box, menu, or scroll bar).

When any of the three hooks described in the previous paragraph is called, it calls the

ProcessWindowMessage function. Based on the received message type, it calls the
NotifyWindow, NotifyWindowClientArea, NotifyWindowBorder, NotifyRectangle, or
NotifyCursor function which, in turn, calls the NotifyHookOwner function.
NotifyHookOwner notifies the hook owner thread using PostThreadMessage with one of
the five user-defined messages: WM_HK_WindowChanged,
WM_HK_WindowClientAreaChanged, WM_HK_WindowBorderChanged,
WM_HK_RectangleChanged, and WM_HK_CursorChanged. When the hook owner
thread receives the message, it calls the global NotifyHooksRegion function which passes
the change to change_tracker of type SimpleUpdateTracker in SDisplay using the user-
defined message type WM_USER. After the change is made, the updateEvent in
SDisplay is set by the triggerUpdate function. The getMessage function of
SocketManager, described in an earlier paragraph, will detect the event, and invoke
SDisplay’s flushChangeTracker to pass the change to comparer of type
ComparingUpdateTracker in VNCServerST.

When the server receives the msgTypeFramebufferUpdateRequest message from a

client, the framebufferUpdateRequest function of the corresponding VNCSConnectionST
will be called. Once the requested of type Region in VNCSConnectionST is updated, the
writeFramebufferUpdate of VNCSConnectionST is called. The writeFramebufferUpdate
function first calls VNCServerST’s checkUpdate to pass the change saved in comparer of
VNCServerST to every client (i.e. to updates of type SimpleUpdateTracker in
VNCSConnectionST). Based on the requested and the updates, the actual update is
computed and sent from the server to the client. The FramebufferUpdate message is from
server to client. It consists of a sequence of rectangles of pixel data for the client to
update its frame buffer. Each rectangle of pixel data may be encoded. There are six
encoding schemes available: Raw, CopyRect, RRE, CoRRE, Hextile, and ZRLE.

The VNC transfers rectangles of pixel data from the server to the client/viewer. Four

different pixel buffers are involved in the pixel transfer. Figure 2.1 illustrates the pixel
flow among those four buffers. When the server receives the
msgTypeFramebufferUpdateRequest request from the client, the server retrieves the
pixels of the specified rectangles from the frame buffer to its internal buffer, and sends
these rectangles of pixels to the client as the reply using the msgTypeFramebufferUpdate
message. When the client receives a rectangle of pixels, it saves the pixels to its internal
buffer, and calls the InvalidateRect function which causes a WM_PAINT window
message to be sent. When handling the WM_PAINT message, the client copies the pixels
from its internal buffer to the frame buffer. This is how the changes/updates on the
server’s desktop are reflected in the VNC viewer’s window on the client computer. The

3

client makes the first msgTypeFramebufferUpdateRequest request when it is
authenticated, and makes each subsequent request after it finishes handling a
WM_PAINT message.

Figure 2.1 The pixel flow among 4 pixel buffers in the VNC.

2.2 Modifications to VNC 4.0 for Application Sharing

The original VNC software can only project the whole desktop from a server to the
DataWall. We modified the VNC server and viewer to project the whole desktop or an
application of interest from a server to the DataWall. In the modified version, we used a
global variable called TargetProcessID to distinguish between projecting a single
application and projecting the whole desktop. If TargetProcessID is zero, the whole
desktop will be projected. Otherwise TargetProcessID is the process identification of the
application that will be projected. Projecting a single application is much harder than
projecting the whole desktop because a single application occupies only a part or even
none of the desktop. In the desktop projecting, the changes can be always additive (or
aggregated) whereas the changes in the application projecting can be additive or
subtractive. For example, in the desktop projecting, when a window is moved, the
changes include the window at the new position plus all the newly exposed areas that
were behind the window before the movement. Yet in the application projecting, the
changes include adding the window at the new position and subtracting the newly
exposed areas. To address this issue, we adopt the absolute approach for the application
projecting and keep the relative approach for the desktop projecting. In the absolute
approach, no hooks are used to collect the changes. (Hooks are considered as inefficient
because they are installed in all the applications running on the desktop.) To indicate

VNC Client Frame Buffer
Bufferv

VNC Server
Internal
Buffer

VNC Client
Internal
Buffer

VNC Server
Frame
Buffer

VNC Server VNC Client

 Window
for VNC
Server

4

whether the rectangles of pixels are relative or absolute, we added a new message type
called msgTypeMode (100) to be sent from the server to the client after authentication.

We also modified the protocol to allow an msgTypeFramebufferUpdate message

containing no rectangle to be sent. Hooks in the desktop sharing are so inefficient that
there are always new changes between two consecutive
msgTypeFramebufferUpdateRequest requests, which keeps the communication between
the client and the server going. In the application projecting, when an application is
minimized, no window will be visible. Therefore no msgTypeFramebufferUpdate
message will be sent to the viewer based on the original protocol, and no new
msgTypeFramebufferUpdateRequest request will be automatically issued from the
viewer. The communication between the viewer and the server stops. When the
application at the server is restored, the viewer will not know it. The communication can
only be restored by sending the msgTypeFramebufferUpdateRequest message at the
request of the user manually. In our modified VNC software, we allow the
msgTypeFramebufferUpdate message with zero rectangles. After the viewer receives
such a message, a new request is issued immediately to keep the communication active.

In the application projecting, an application running on a remote computer can be

projected on the DataWall with its own window frame. The VNC viewer does not add its
frame to the application. Therefore, there is no difference between a projected
application from a remote computer and an application started on the local DataWall
computer. To achieve this, we added a new message called msgTypeVisibleWindows (99)
to the VNC protocol in the server to viewer direction. For the application projecting, in
addition to using the msgTypeFramebufferUpdate message to send rectangles of pixels,
we use the new message type msgTypeVisibleWindows to send the information about the
windows involved. The information for a window is described in the class named
CSVisibleWindow:
 class CSVisibleWindow {
 unsigned int m_nWid // window ID
 unsigned int m_nPid // parent window ID
 Rect m_rRect; // window geometry
 };

Therefore, the msgTypeVisibleWindows message completely describes the

relationship among those related windows. In addition, the server orders the windows in
the msgTypeVisibleWindows message based on their stack order. Based on the
msgTypeVisibleWindows message received from the server, the viewer can reconstruct
the windows from the message.

To eliminate the flicking effect, we use double window chains at the viewer side by

defining the following three variables in the CView class:
bool bIsZeroActive; // Is visibleWindows0 active?

 std::vector<CCVisibleWindow> visibleWindows0;
 std::vector<CCVisibleWindow> visibleWindows1;

5

 Whenever the viewer receives the information about a window, it will add the

window to the active visible window vector. Before adding the window, it first checks
whether the window already exists at the viewer side by searching in the inactive
(previous) vector. If the window exists in the previous vector, the window will be copied
to the active vector. Otherwise, the client creates a window of type CVNCWnd. If the
window to be created has a non-zero parent window ID, the corresponding parent
window at the viewer side can be found from the active vector. Since the windows are
ordered by their stack order, the algorithm will not fail. All the windows in the previous
vector that are not copied (i.e. they no longer exist) will be destroyed. Finally, every
window in the active vector will be painted by calling MoveWindow if the window has
been resized or InvalidateRect otherwise. The actual painting is done by copying the
pixel data stored in buffer of the VNC main window of type CView. In the application
projecting, the main VNC window still exists, but it is not visible.

2.3 Visitor and Local Modes for Application Sharing

The original VNC is only capable of desktop sharing. The modified VNC can
perform application sharing in addition to desktop sharing. For application sharing, how
to select an application for sharing is a key issue. To address both privacy and
convenience issues in application sharing, a VNC server can be run in one of the two
modes: local and visitor.

Figure 2.2 Selection of an application at the application computer for sharing.

In the visitor mode, the user (i.e. the visitor) at the application computer end is
responsible for selection of an application for sharing. The visitor can select any
application running on his/her computer for sharing on the data wall using the property
sheet as shown in Figure 2.2. A user at the Data Wall is not able to select an application

6

of the application computer to be shared. Once an application is selected for sharing, the
application window(s) will be projected on the DataWall, and a user at the DataWall end
can take control of the application. However, once an application window is minimized,
the data wall user is not able to restore it. When an application is minimized within
Windows, an icon is shown on the task bar. A minimized application can be restored by
clicking the corresponding icon. However, the task bar is not projected in application
sharing. To address the issue, we added a task box that lists all minimized windows of the
shared application in the visitor mode. Figure 2.3 shows a task box in the visitor mode.

Figure 2.3 A task box in the visitor mode.

In the local mode, the user at the DataWall end takes full control of the remote
computer. The user at the DataWall end can launch any application and select any
application for sharing without physically accessing the remote computer. The magic is
again the task box. Figure 2.4 shows a task box in the local mode. It consists of two parts:
the launch bar and the task list. The DataWall user uses the launch bar to launch an
application at the remote computer. There are four applications shown in the figure,
Windows Explorer, MS Paint, Internet Explorer, and MS Word. To start MS Paint,
Internet Explorer or MS Word, the user just clicks the corresponding icon. If the user
wants to start other applications, the user needs to first launch the Windows Explorer and
select the Windows Explorer for sharing. From the shared Windows Explorer, the user
can go over the whole file system and start any application from the Windows Explorer.
In the local mode, the task list consists of all the applications running on the remote
computer. In fact, the applications shown in the task list here is equivalent to the
applications shown in the property sheet of Figure 2.2. Since the space is very limited on
the DataWall, only three application windows are shown directly at one time, the other
application windows can be accessed using the up and down arrow keys.

Figure 2.4 A task box in the local mode.

7

In both local and visitor modes, we need to send a list of window icons and titles from

the VNC server to the VNC client (i.e. the DataWall) and display them on the task list in
the task box. In the local mode, the list consists of all application windows running on the
remote computer. In the visitor mode, the list consists of the minimized windows that
belong to a shared application. To transfer the list of window icons and titles, we added a
new message type named msgTypeAppIcons to the VNC protocol. The message starts
with the number of windows. For each window, it consists of the window id, window title
and window icon. The most difficult part is how to transfer the icon from the VNC server
to the VNC client. An icon consists of two small images. These two images are device-
dependent bitmaps (DDB). Therefore we have to covert device-dependent bitmaps to
device-independent bitmaps (DIB) at the server end before sending them to the client. At
the client end, we need to convert DIBs to DDBs compliant to the client format, and
make an icon from two DDBs. Finally, the icon will be shown with the title in the task
list. The icons in the launch bar are also sent from the server using the msgTypeAppIcons
message type.

To implement the transfer of window information including window ID, tile and icon

from the server to the client, we defined a class called CSTaskWindow at the server and
CCTaskWindow at the client. The data members of CCTaskWindow are listed below, with
CSTaskWindow being similar.

class CCTaskWindow {

 unsigned int Id; // window handle
 char *m_pTitle; // window title
 int IconWidth; // icon width
 int IconHeight; // icon height
 int IconWidthBytes; // icon width in bytes for bitmask bitmap
 unsigned char *m_pIconMask; // DIB data for icon bitmask bitmap
 unsigned char *m_pIconColor; // DIB data for icon color bitmap
 HICON m_hIcon; // icon handle

};

At the server side, we defined FindIconInfo() for CSTaskWindow to get icon

information including IconWidth, IconHeight, IconWidthBytes, m_pIconMask and
m_pIconColor from the m_hIcon handle. These five pieces of information will be sent
from the server to the client. At the client end, we defined MakeIcon() for
CCTaskWindow to use the received icon information to make an icon with the m_hIcon
handle. Both m_pIconMask and m_pIconColor are DIB image data. In our
implementation, the bitmask bitmap has a depth of one-bit, and the color bitmap has a
depth of 32 bits. When an image has a depth of one-bit, there is no difference between its
DDB format and its DIB format. Since the image data for a scan line must be word-
aligned, sometimes padding is necessary. IconWidthBytes indicates the number of bytes
in a scan line. The GetBitmapBits() function is used to get m_pIconMask from an
HBITMAP handle which is in turn obtained from an HICON handle by using the
GetIconInfo() function. The DDB and DIB conversion for a color bitmap is performed by

8

using the GetDIBits() and SetDIBits() functions. Finally an icon is made by calling the
CreateIconIndirect() function.

We also added the msgTypeCommand message to send a command from the client to
server. The message consists of three command subtypes related to the task box: restoring
a minimized window in the visitor mode, launching an application and selecting an
application for sharing in the local mode.

2.4 Reverse Connection in VNC

A connection is normally established from the viewer (i.e. the DataWall) to a server
(i.e. a remote application computer). The VNC also allows the reverse connection, i.e. the
connection initiated from a remote application computer to the DataWall. The reverse
connection allows a user to send an application from an individual application computer
to the DataWall.

When vncviewer.exe is started with the –listen option, it becomes a daemon, i.e. a
server. In the WinMain of the VNC viewer, the WSAStartup function is called by
TcpSocket::initTcpSockets() regardless of the connection direction. If the –listen option
is used with the VNC viewer, the acceptIncoming variable will be set to true, and the
necessary socket, bind, and listen functions will be called in the constructor of
network::TcpListener which is constructed in the addDefaultTCPListener() function of
view_manager of type CViewManager. The addDefaultTCPListener() function has a
parameter named port on which the daemon will be listening. A connection request from
a remote application computer (FD_ACCEPT) will be converted to a WM_USER window
message to CViewManager by the WSAAsyncSelect function. When the
processMessage() function of CViewManager processes the WM_USER message because
of a connection request from a remote application computer, it calls the accept function
and then the start() function of CViewThread. The start() function of CViewThread
creates a thread to execute the threadProc() function which in turn calls the run()
function. In the run() function of CViewThread, a view of type CView is defined, and the
initialise() function of CView is called. The initialise() function calls the
initialiseProtocol() function to initialize the connection state to
RFBSTATE_PROTOCOL_VERSION and uses WSAAsyncSelect to convert the read
(FD_READ) or close (FD_CLOSE) event of the connection to the WM_USER message to
be processed by CView. The initial handshaking between the daemon and the remote
application computer is handled by processing the WM_USER messages.

What happens at the remote computer side is a little complicated. This is mainly

because winvnc.exe can be started in user mode and service mode. Here we are only
interested in the user mode. However, the user mode code was written to mimic the
service mode. There are two steps to establish a connection to the VNC viewer daemon
from a remote application computer. The first step is to execute winvnc.exe to start the
regular VNC server. The second step is to execute winvnc.exe again with the –connect

9

option to make a connection request by specifying the host name and port number of the
VNC viewer daemon. The connection is not established directly. The second instance of
winvnc.exe makes a request to the first instance of winvnc.exe, and the first instance (i.e.
the regular VNC server) makes a connection request to the VNC viewer daemon on
behalf of the first instance. Specifically, when the second instance starts with the –
connect option, it uses the FindWindow function to find the tray icon of the first instance
and send the tray icon a message of type WM_COPYDATA. The message carries the host
name and the port number of the VNC viewer daemon. When the tray icon of the first
instance receives the WM_COPYDATA message, it calls the addNewClient() function of
the VNC server (i.e. VNCServerWin32) with the host name and the port number. The
addNewClient() function constructs a TcpSocket to connect the VNC viewer daemon with
the host and port provided, and calls the queueCommand() function to queue the
AddClient command with the constructed socket. When the AddClient command is
processed by the doCommand() function of VNCServerWin32. The addClient() function
of vncServer, declared as a VNCServerST , will be called to add a reverse connection to
the VNC server. The rest will be the same as the connection from the VNC viewer to the
VNC server.

2.5 VNC for Unix

The VNC code for UNIX is similar to the code for Microsoft Windows. In fact, the
codes for both operating systems share a majority of components including network, rdr,
rfb, Xregion and zlib. In VNC 4.1.2 for UNIX, there are two directories, common and
unix. We installed the VNC server as an extension to XFree86 4.3.0 under Fedora 8.
Figure 2.5 illustrates the communications among three main programs: VNC Extension,
vncviewer and vncconfig. The report will describe what is unique to our installation.
Briefly, the VNC server is loaded as a module (vnc.so) that extends the X server. As an X
client, vncconfig configures and controls the VNC server using the VNC extension to the
X protocol. vncviewer communicates with the VNC server using TCP/IP sockets.

Figure 2.5 The communications among three main VNC programs.

vncconfig

Xlib

X Server
with VNC Ext

vncviewer

Xlib

X Server

VNC Server VNC Client

10

Module Loading and Initialization

To load vnc.so, a line of Load "vnc" was added to the "Module" section of the
/etc/X11/xorg.conf configuration file. In the xf86vncModule.cc file, the following line
indicates the module version information being vncVersRec and the module setup
function being vncSetup.

XF86ModuleData vncModuleData = { &vncVersRec, vncSetup, NULL };

The vncSetup function calls LoadExtension with vncExt of type ExtensionModule as

the parameter. vncExt specifies vncExtensionInitWithParams as the extension
initialization function. vncExtensionInitWithParams first retrieves the VNC-related
options in the ”Screen” section of the /etc/X11/xorg.conf configuration file and sets the
retrieved option values as the values for the corresponding parameters. One of the
retrieved option values is the name of the file that stores the VNC server password. Then
vncExtensionInit in vncExtInit.cc is called. vncExtensionInit calls AddExtension in the
following format to add the VNC extension named VNCEXTNAME. Later vncconfig can
make requests to the VNC extension to be processed by ProcVncExtDispatch or
SProcVncExtDispatch, depending on whether the byte order needs to be swapped.

 AddExtension(VNCEXTNAME, VncExtNumberEvents, VncExtNumberErrors,
 ProcVncExtDispatch, SProcVncExtDispatch, vncResetProc,

 StandardMinorOpcode);
Then vncExtensionInit will set up a listener to wait for connections from VNC

viewers and call vncHooksInit to hook up drawing-related functions.

Drawing Hookup

A regular X client (or application) uses the X protocol to ask the X server to perform
the drawing on the screen. The vncHooksInit function in vncHooks.cc is responsible for
intercepting the drawing-related functions and figuring out the affected region on the
screen. The affected region will then be sent to the VNC viewer.

The drawing-related functions are divided into three groups. The first group consists

of the screen-related functions including CloseScreen, CreateGC,
PaintWindowBackground, PaintWindowBorder, CopyWindow,
ClearToBackground, RestoreAreas, InstallColormap, StoreColors,
DisplayCursor, and BlockHandler. The second group consists of the GC(Graphics
Context)-related functions including ValidateGC, ChangeGC, CopyGC, DestroyGC,
ChangeClip, DestroyClip, and CopyClip. The third group consists of the GC-related
operations including FillSpans, SetSpans, PutImage, CopyArea, CopyPlane,
PolyPoint, Polylines, PolySegment, PolyRectangle, PolyArc, FillPolygon,
PolyFillRect, PolyFillArc, PolyText8, PolyText16, ImageText8,
ImageText16, ImageGlyphBlt, PolyGlyphBlt, and PushPixels. The vncHooksInit
function first saves the original drawing-related functions, and replaces them with the

11

corresponding VNC functions that have a vnchook prefix. Therefore, whenever, an X
client causes a drawing-related function to be called, the corresponding VNC function
will be called. In the corresponding VNC function, the saved original drawing function
will be first called to perform the actual drawing. Then any screen changes caused by the
drawing function will be recorded into the VNC server, and sent to the VNC viewers.

The vncconfig Program

The vncconfig program is an X client that communicates with the VNC extension to

the X server to configure and control the VNC server. It first calls the XInitExtension
function with VNCEXTNAME to find the major_opcode for the extension requests. The
vncconfig program can send nine types of extension requests: X_VncExtSetParam,
X_VncExtGetParam, X_VncExtGetParamDesc, X_VncExtListParams,
X_VncExtSetServerCutText, X_VncExtGetClientCutText,
X_VncExtSelectInput, X_VncExtConnect, X_VncExtGetQueryConnect, and
X_VncExtApproveConnect. For example, if a user types in the following command.

vncconfig -get passwordFile

A VNC extension request consisting of the major_opcode for the VNC extension, the
X_VncExtGetParam type, and the parameter name “passwordFile” will be send to the X
server. Based on the major_opcode, the VNC extension dispatcher in the vnc.so module
will be called, and the dispatcher will process the request based on the request type. For
the X_VncExtGetParam type, the password filename (mostly ”/root/.vnc/passwd”) will
be retrieved and sent back using a reply message. When vncconfig runs with no options,
it is to support clipboard transfer to and from the VNC viewers. Without it, no clipboard
support is provided.

Clipboard Transfer

When the vncconfig program is started with no options, it creates a simple window

with three check boxes: “Accept clipboard from viewer”, “Send clipboard to viewer”, and
“Send primary selection to viewer”. When the VNC server receives
msgTypeClientCutText from a VNC viewer, it calls vncClientCutText in the
clientCutText function of XserverDesktop that sends a VncExtClientCutTextNotify
event to the client vncconfig. At receiving the event, vncconfig sends a request of type
X_VncExtGetClientCutText in the XVncExtGetClientCutText function to retrieve the
client cut text. It then saves the retrieved text in the cut buffer using XStoreBytes, and
declares itself as the owner of the clipboard and the primary selection.

When the VNC server detects a selection change, it calls the

SendSelectionChangeEvent function that sends a VncExtSelectionChangeNotify event
to the client vncconfig. At receiving the event, vncconfig calls XConvertSelection to
request the server cut text from the owner. Then the sectionNotify function of requestor
will be called. The sectionNotify function calls the XVncExtSetServerCutText function to

12

send the server cut text using a request of type X_VncExtSetServerCutText. The VNC
server will send the server cut text to the viewers in the serverCutText function of
XserverDesktop.

Mouse and Keyboard Events

 When the VNC server receives msgTypePointerEvent (or msgTypeKeyEvent)
from a VNC viewer, it calls the pointerEvent (or keyEvent) function of Xserverdesktop, in
which the LookupPointerDevice (or LookupKeyboardDevice) will be called to find the
pointer to the corresponding device, and the event will be delivered using its
processInputProc function.

Figure 2.6 An X desktop on a Windows platform.

Figure 2.6 illustrates an X desktop on a Windows platform. The VNC for Unix is not

suitable for application sharing. As Figure 2.5 shows, VNC is installed along with the X
server. It is very difficult for the X server to get any information about an application
which is started at the X client side. In fact, as described previously, in order to achieve
clipboard sharing, an application called vncconfig must be running to assist.

3. Mirror-driver-based Approach

The VNC-based approach has two shortcomings. First, it needs to access the frame
buffer located on the video memory, which is slow. Second, the
msgTypeFramebufferUpdate message will be sent to the client only after the client
requests it. To overcome these shortcomings, we introduce the mirror-driver-based
approach. In the mirror driver, we keep a copy of the frame buffer (i.e. the mirror) in
system memory. Second, we send the msgTypeFramebufferUpdate message to the client
as soon as possible without waiting for a request from the client.

13

3.1 Mirror Driver

A mirror driver is able to intercept all the drawing commands issued from
applications. Whenever an application calls a Win32 GDI (Graphics Device Interface)
function, the GDI Graphics Engine will convert it into a graphics DDI (Device Driver
Interface) function to be executed by the display driver. The GDI Graphics Engine, the
display driver, and the mirror drive reside in the kernel of the operating system. Like the
actual display driver, a mirror driver will receive all the graphics DDI functions generated
by the GDI Graphics Engine. Our idea is to transport all the intercepted commands to
another computer, the DataWall computer in our case, and to execute the drawing
commands on the DataWall. Since the mirror driver is in the kernel mode, and it is not
able to transport all the intercepted commands directly to the DataWall. That is why an
application called forwarder is designed to retrieve and forward the intercepted
commands. The application running on the DataWall to execute the drawing commands
is called the executor. Figure 3.1 illustrates the architecture of the mirror-driver-based
system.

Figure 3.1 The architecture of the mirror-driver-based system.

However, the DDI functions to be executed have a different set of parameters from

the GDI functions and some of the parameters are pointers (therefore context-dependent).
For example, when an application draws a line from the current position to a specified
point using the Lineto GDI function in Win32 API, three parameters, a handle to the
destination device context, the x-and y-coordinates of the ending point are specified. The
GDI Graphics Engine converts Lineto into the 9 parameter DDI function named

Application

Win32(Including GDI32)

GDI
Graphics
Engine

Display
Driver

Mirror Driver

Eng
Calls

DDI
Calls

Buffer

(Commands)

User Mode

Kernel Mode

Command
Forwarder

 Network
Com Executor
(Application)

Win32(Including GDI32)

User Mode

Kernel Mode

GDI
Graphics
Engine

Display
Driver

Eng
Calls

DDI
Calls

14

Drvlineto. When the executor receives the Drvlineto function, it has to convert it back to
the Lineto function so it can be called by the executor. Some parameters are context
dependent and cannot be sent directly. Therefore, we decided to maintain an engine-
managed surface and to punt the drawing operations back to GDI to let GDI perform the
drawing operations on the engine-managed surface. After each drawing, we extract the
part of surface that is affected by the drawing operation and send the affected part to the
DataWall.

To make the mirror driver functional, we only need to implement four required
drawing functions, DrvCopyBits, DrvBitBlt, DrvTextOut, and DrvStrokePath. These
functions ask the driver to perform the corresponding drawing operations on the device-
managed surface. Due to the complexity of these functions, we will punt them back to
the GDI engine by calling EngCopyBits, EngBitBlt, EngTextOut or EngStrokePath
respectively with an engine-managed surface. In the DrvEnableSurface function, we
create a device-managed surface using EngCreateDeviceSurface and create an engine-
managed surface using EngCreateBitmap, and associate the engine-managed surface with
the device-managed surface. When a DDI drawing function, such as DrvBitBlt, gets
called with the device-managed surface, we get the engine-managed surface from the
device-managed surface, and then pass the engine-managed surface as the destination
surface of EngBitBlt. In this way, the engine-managed surface mirrors the actual screen
and we know all the changes made to the screen.

Next we will discuss which part of the screen has been changed by each required DDI
drawing function. DrvCopyBits has six parameters: psoDst, psoSrc, pco, pxlo, prclDest,
and pptlSrc. We are interested in two parameters, psoDst and prclDest. psoDst is a
pointer to a SURFOBJ structure that identifies the device-managed surface from which
the engine-managed surface can be obtained. The prclDest is a pointer to a RECL
structure that defines the area to be modified. The RECL structure contains four members
which identify the top-left corner and the bottom-right corner of a rectangular area. Only
the part of the screen within the rectangle identified by prclDest is changed and needs to
be transferred to the DataWall. DrvBitBlt has eleven parameters: psoTrg, psoSrc,
psoMask, pco, pxlo, prclTrg, pptlSrc, pptlMask, pbo, pptlBrush, and rop4. Similar to
DrvCopyBits, we are only interested in two of them, psoTrg and prclTrg. psoTrg points
to the device-managed surface, and prclTrg points to a RECL structure that defines the
rectangular area to be changed.

DrvTextOut has ten parameters: pso, pstro, pfo, pco, prclExtra, prclOpaque, pboFore,
pboOpaque, pptlOrg, and mix. Only two of them are needed. One is pso that points to the
device-managed surface. The other is pstro that points to a STROBJ structure that defines
the glyphs to be rendered and the positions at which to place them. The member,
rclBKGround, in the STROBJ structure is a RECL structure that describes the bounding
box for the string. The bounding box contains the area that may be affected by the
glyphs. Therefore it is sufficient to transfer all the pixels within the bounding box to the
DataWall.

15

DrvStrokePath is a little complex and needs more effort. It has eight parameters: pso,

ppo, pco, pxo, pbo, pptlBrushOrg, plineattrs, and mix. Again, pso points to the device-
managed surface from which we find the engine-managed surface. Pco points to a
CLIPOBJ structure. All the lines and/or curves in the path may be enumerated preclipped
in the CLIPOBJ structure. That is, all lines and/or curves fall in the clip region. Next we
will talk about how to get the affected area from the CLIPOBJ structure. CLIPOBJ
structure consists of six members: iUniq, reclBounds, iDComplexity, iFComplexity,
iMode and fjOptions. iDcomplexity specifies the complexity of the region relevant to the
present drawing operation. iDComplexity must be one of following values, DC_RECT,
DC_TRIVAL or DC_COMPLEX. If iDComplexity is DC_RECT or DC_TRIVAL, the
member rcclBounds reveals the rectangle in which the lines or curves will be bounded. If
iDComplexity is DC_COMPLEX, pco contains a batch of rectangles that bound the lines
and/or curves. In this case, we have to enumerate the rectangles. The
CLIPOBJ_cEnumStart function can be called to determine the exact number of
rectangles in the region and the CLIPOBJ_bEnum function enumerates the rectangles
from the specified clip region. We union all the rectangles, and send all the pixels within
the union to the DataWall.

3.2 Forwarder and Executor

The forwarder is responsible for retrieving the changes in the mirror driver. To
retrieve the changes in the mirror driver, we implemented the DrvEscape function for
communication between the forwarder and the mirror driver. We implemented five
commands within the DrvEscape function: GET_RESOLUTION,
START_MIRROR_DRV, STOP_MIRROR_DRV, CHECK_CHANGE, and
GET_CHANGE. GET_RESOLUTION is to get the resolution and the color depth of the
mirror device. Although it may not be necessary because the resolution is set by the
application using ChangeDisplaySettingsEx, we keep this command there for
convenience or for another application just in case. START_MIRROR_DRV is to ask the
mirror driver to start drawing the mirror image on the engine-managed surface, and
STOP_MIRROR_DRV is to ask to stop the drawing. Once the mirror driver is installed,
all the functions for drawing the mirror images will be called. If the
START_MIRROR_DRV command is not given, the called functions will return
immediately without any actual drawing. After the START_MIRROR_DRV command, the
drawing commands executed by the actual graphics board will be executed on engine-
managed surface. Since the drawing in the mirror driver can be started and stopped for
efficiency, it is recommended that the application immediately issue a whole screen bitblt
operation after the START_MIRROR_DRV command. In this way, engine-managed
surface will have the same content as the actual frame buffer. CHECK_CHANGE is to
check whether any change is made to engine-managed surface. If the CHECK_CHANGE
indicates changes have been made to the engine-managed surface, the GET_CHANGE
command can be issued to retrieve the changes.

16

The executor on the DataWall creates an individual thread for each remote machine.
The thread establishes a socket to communicate with the corresponding remote machine.
Through the established socket, the thread first obtains the screen resolution and color
depth of the remote machine. Based on the received screen resolution, the thread creates a
window of the same size as the resolution. Each window has its own distinct color as its
border so the users can distinguish the projections of the remote machines on the
DataWall by their border colors. The window class is defined as follows.

class DWWnd{
public:
 DWWnd();
 HWND getHandle() const {return m_pWnd;}
 BOOL Create(const char name[], unsigned int style, unsigned int
 ex_style, int sx, int sy, int x, int y, int w, int h);
 BOOL Move(int sx, int sy, BOOL bRepaint);
 BOOL InBorder(int x, int y);
 void Destroy();
 LRESULT CALLBACK processMessage(UINT msg, WPARAM wParam,
 LPARAM lParam);

 HWND m_pWnd;
 int LEFT, TOP;
 int WIDTH, HEIGHT;
 char * SCREEN_BUF;
 char * buf;
 int screen_buf_lDelta;
 BITMAPINFO RGB32BitsBITMAPINFO;
 int DstX, DstY, Cur_Width, Cur_Height, SrcX, SrcY;
 int COLOR_DEPTH;
 int TODOWN_BITMAP;
 HBITMAP DirectBitmap;
 int border;
 BOOL drawingBorder;
 COLORREF BorderColor;
 HBRUSH hbr;

};

Variables LEFT, TOP, WIDTH and HEIGHT in the class DWWnd are the geometry
of the window created on the DataWall for a remote machine. SCREEN_BUF holds the
desktop image of the remote machine. Variable drawingBorder indicates whether a
border for the window is needed. If the border is needed, border and BorderColor are the
border width and the border color respectively. The processMessage function processes
the messages sent to the window, such as WM_PAINT, WM_MOUSEMOVE,
WM_WM_LBUTTONDOWN, etc. Whenever the executor on the DataWall receives an
image update from a remote machine, a WM_PAINT message will be generated.

Figure 3.2 shows the flow of the image update from the remote machine to the

DataWall. In the mirror driver running on the remote machine, a buffer called the mirror

17

driver buffer which is an engine-managed surface holds the current desktop image of the
remote machine. The forwarder only sends the image update to the executor. For
example, in Figure 3.2, three rectangles of images, shown in green, blue and light blue,
have been updated on the remote machine. These images might be overlapped as shown
in the figure. The forwarder computes a minimum bounding box to contain all the image
updates. In this example, the minimum bounding box is marked as A in Figure 3.2. The
forwarder sends the rectangle A of pixels to the executor. For each remote machine, the
executor on the DataWall keeps a window buffer whose size is the same as that of the
mirror driver buffer on the remote machine. When the executor receives the rectangle A,
it will update the window buffer by placing the rectangle A at the corresponding position.
The window buffer will be consistent with the mirror driver buffer when the updating
was completed. The window buffer is reflected in the window on the DataWall. When the
window buffer is updated, the executor called the InvalidateRect function to trigger a
WM_PAINT message to be sent to the window. The processMessage function paints the
rectangle A with the corresponding image update.

Figure 3.2 The flow of the image update from the remote machine to the DataWall.

18

The executor is also responsible for input event collection. The processMessage

function will capture and send the mouse and keyboard events to the remote machine.
The forwarder on the remote machine will simulate these events locally to control the
remote machine. Application sharing is also implemented as in the VNC-based approach.

3.3. Reverse Use of Mirror Driver

Usually the mirror driver and the forwarder run on an individual computer called an
application computer, and the executor runs on the DataWall as shown on the left side of
Figure 3.3. The reverse use of the mirror driver is to run the mirror drive and the
forwarder on the DataWall, and to run the executor on an individual computer, referred to
as a control computer as shown on the right side of Figure 3.3. The job of the executor is
to display the content of its remote partner (i.e. the mirror driver and forwarder) and to
provide input events to the partner. When the executor runs on the control computer, its
partner (the mirror driver and forwarder) will run on the DataWall computer, and their
main functionality is to let the executor to control a part of the DataWall. This is
particularly useful when a user is interested in an application on the DataWall and wants
to interact with it. Only one instance of the forwarder needs to be run on the DataWall.
One forwarder on the DataWall can serve multiple executors (three in Figure 3.3).

Figure 3.3 Executor can run on the DataWall or a control computer.

The executor always keeps a buffer (referred to as the window buffer in previous

section) of the same size as the frame buffer size of its partner (the mirror driver and
forwarder) regardless of the computer on which the executor runs or the mode in which

DataWall Computer

Forwarder 1

Mirror Driver

Forwarder 2

Mirror Driver

Executor
1

Executor
2

Forwarder

Mirror Driver

Executor 1

Executor 2

Executor
3

Control Computers Application Computers

19

the executor runs. When the executor runs on the DataWall computer, its main job is to
project an application from the corresponding application computer to the DataWall. In
this case, a main window whose client area has the exactly same size as the buffer will be
created. The client area reflects the frame buffer (i.e. the desktop) of the forwarder.
Therefore, one-to-one ratio is kept between the main window and the application
computer desktop. Since the application sharing is interested in this case, the main
window will be hidden. However, the windows that belong to the application to be shared
need to be displayed. To display these application windows, the same numbers of
windows will be created and these windows will be positioned at the same locations
within the hidden main window. Figuratively, to display the windows that belong to the
application to be shared, we push up these windows from the hidden main window to be
seen. Since multiple instances of the executor can run on the DataWall, each application
window will be bounded by a different color to indicate a different source application
computer.

When the executor runs on the control computer (and its forwarder runs on the

DataWall computer), the desktop sharing is of interest, and its main job is to let the user
see the DataWall clearly on the local computer (i.e. the control computer) and interact
with the DataWall directly from the control computer. The executor in this case can run
in windowed mode or in full-screen mode, and a user can switch between these two
modes by pressing “F8” to as shown in Figure 3.4.

Figure 3.4 Switch between the windowed and full-screen modes.

In the windowed mode, a top-level window will be created to show the DataWall. In

this mode, one-to-one ratio is kept between the created window and the DataWall. Since
the created window or even the whole control computer screen is smaller than the
DataWall, only a part of the DataWall can be seen at one time and horizontal and/or
vertical scroll bars are added to let the user to select the part to be seen. A user can use
the scroll bars to select the interesting part of the DataWall. To interact with the
DataWall, a user can use his/her local mouse and keyboard within the window. In the
full-screen mode, no scroll bars will be shown. However, the DataWall can be shown at a
scale-down ratio instead of one-to-one. The whole DataWall, a monitor of the DataWall

Windowed

Full-screen

Press “F8”

Press “F8”

20

or a window of a DataWall can be shown at a scale-down ratio. The one-to-one ratio can
still be shown. In the one-to-one case, scroll bars are still not shown, but a user can use
the arrow keys to move the portion to be seen. In all the cases, the user can use his/her
local mouse and keyboard to interact with the DataWall.

Under the full-screen mode, we use a topmost tool box, referred to as the state control
box, to select one of seven states: green F, red M, green M, green W, red W, red 1-1 and
green 1-1. F stands for “Full View”, M for “Monitor View”, W for “Window View”, and
1-1 for “1-1 View”. In a green mode, any input event will be sent to the DataWall. In a
red state, a user can select a part (a monitor, a window, or a rectangular area of the same
size as the local computer) of the DataWall for view. Four arrow buttons are added to the
state control box. A user can use these arrow buttons in a green state to move the area of
interest by a monitor, a window or a few pixels on the DataWall. Figure 3.5.a shows the
red W state in which the whole DataWall is shown at a reduced size on the control
computer, and a user can use the mouse to select a window to be operated. Once a
window is selected, it enters the green W state, and a user can immediately provides input
to the DataWall. If the user is not happy with the selected window, the user can either use
the arrow buttons to choose a neighbor window or go back to the red W state by clicking
the W button and then use the mouse to select another window. Figure 3.5.b shows the
details of the state control box.

Figure 3.5.a The executor in the red W state.

Figure 3.5.b The state control box.

21

To let multiple users to control the DataWall simultaneously, we also added a
WorkWithLaser option to the forwarder. When WorkWithLaser=0, the executor works
with the forwarder in both ways, that is, the forwarder sends the frame updates to the
executor and the executor sends the input events to the forwarder. When
WorkWithLaser=1, the executor still receives the frame updates from the forwarder, but
the executor sends the input events to the Laser client. (Laser Client is to be discussed
next seciton.) The Laser client has the ability to dispatch the input events to drive the
system cursor of an application computer in addition to that of the DataWall computer.
The forwarder sends the input events to drive the system cursor of the DataWall
computer only.

With WorkWithLaser=1, the forwarder first tries to find the Laser client. If the Laser

client exists, the forwarder will get the port number used by the Laser client for serving
input clients, using the SendMessage function with Msg=WM_USER+98 and
WParam=5, and then forwards the port number to the executor. The executor will use the
port number to connect itself to the Laser client. Once connected to the Laser client, the
forwarder sends an ADD_CURSOR request to ask the Laser client to allocate a software
cursor as shown in Figure 3.6 to represent itself. (Of course, before the executor
disconnects itself from the Laser client, it sends a DEL_CURSOR request to deallocate
the software cursor.)

Figure 3.6 The software cursors managed by the Laser client.

The executor will monitor the following window messages: WM_LBUTTONDOWN,

WM_LBUTTONUP, WM_RBUTTONDOWN, WM_RBUTTONUP,
WM_MOUSEMOVE, WM_MOUSEWHEEL, WM_KEYDOWN, and WM_KEYUP.
For each message, the executor will fill the following InputEvent structure as shown
below and sent it to the Laser client using an INPUT_DATA messge type. The Laser
client will process the INPUT_DATA messge type similarly to the processing of those
from laser pointers. At receiving an INPUT_DATA messge, the Laser client will dispatch
the message to an application computer or simulate it on the DataWall computer.
Furthermore, we now simulate the WM_MOUSEMOVE event even if no mouse button
is down. Therefore we can see some window effects such as tooltips.

typedef struct _input_event {
 int eventtype; //mouse 1; key 2.
 WORD character;

22

 int state; // move 1; press 2; lift 4; or delta.
int button; // nothing down 0; left 1; right 2; sgl clk 3;

// dbl clk 4; middle 5; wheel 6.
 int x;
 int y;
} InputEvent;

4. Laser Pointers as Input Devices to DataWall

A laser pointer is usually used by a presenter to direct audience’s attention. It is also
natural to think of using a laser pointer as an input device to a computer with a large
display such as the DataWall. In fact, the movement of the laser dot maps naturally to the
cursor movement, and the push and release operations on the laser pointer map naturally
to the button-down and button-up operations on the mouse. In a previous project, we
developed Laser software that used multiple analog security cameras to track laser
pointers. However, image processing is very computation-intensive. In this project, we
divided the Laser software into Laser server and Laser client. The Laser server is
responsible for computation-intensive image processing and can be run on a different
computer from the Laser client. Furthermore, we used digital cameras in place of analog
security cameras.

4.1 States of Laser Software

In the original Laser software, there are 5 global stages: INIT(0), CONFIGURED(1),
CALIBRATED(2), STARTED(3) and STOPPED(4). Although we used the term stage in
the original software, we prefer the term state in the new version. Now the states of INIT,
CONFIGURED and CALIBRATED are maintained in the server for each monitor as
well as each client. A client can drive multiple monitors (or screens). A client is in a state
of x (INIT, CONFIGURED or CALIBRATED) if all of its monitors are in the state of x.
The states of STARTED and STOPPED are still kept as global for the server itself. When
the server is executed, it first checks the number of monitors available on the sever
computer, then reads the configuration information for each client that was saved in
laser_server.ini in the previous execution, and finally listens on a port that has a default
value of 10002. The configuration information for each client is permanently identified
by its IP address. Even when there is no connection established from a client, a user can
check any one of three cameras and display the captured images on the selected server
monitor. When a client is executed on a computer, it will establish a connection to the
server. Once a connection is established, the client can be also identified temporally by
the socket. The server will first ask the client to send its monitor configuration
information. If the server does not have any information about the client, an entry is
created for the client and the client and its monitors are in the INIT state. If there is an
entry for the client, there are three cases. If the monitor configuration information
matches the received information, the client keeps the same state. If the number of
monitors does not match, the client goes back to the INIT state. If the number of monitors
matches, but the resolution does not match, the client goes back to the CONFIGURED

23

state. When a client goes back to the INIT or CONFIGURED state, all of its monitors
also go back to the INIT or CONFIGURED state respectively.

Configuration is to associate the cameras with the screens. Configuration is initiated

by the user at the server side. A user can also check a camera during configuration
because one of the reasons for camera check is to make sure the association between a
camera and a screen is correct. When the camera check command is issued by the user,
the drawing command is sent from the server to the corresponding client. The client
performs the drawing operation on the corresponding screen, and sends an
acknowledgement to the server. On receiving the acknowledgement, the server starts to
continuously grab the images and display them live on a designated server monitor. With
the help of live capture, the user can also adjust the camera to make sure the screen is
completely captured by the camera, and the camera iris setting is appropriate. Once a
screen/monitor is configured with a camera, the configuration information is saved into
the laser.ini file. Once all the monitors of a client are configured, the client is considered
as configured, i.e. in the CONFIGURED state.

Calibration is to establish the relationship between the pixels in the camera and the

pixels in the corresponding screen. The calibration has to be done one by one. Once a
camera is chosen and the collaboration command is issued at the server side, the
calibration process starts. The server takes the active role in the calibration process. The
server issues the pattern-drawing command to be sent to the corresponding client. The
client will draw the pattern on the corresponding screen, and sends an acknowledgement
to the server. The server then takes a snapshot of the corresponding screen, analyzes the
snapshot, and shows the result on a designated server monitor. If the calibration is
successful, the user can accept the calibration and the collaboration information will be
saved in laser.ini file to replace previous calibration information, if exists. Whenever all
the monitors of a client are calibrated, the client is considered as calibrated, i.e. in the
CALIBRATED state.

The server can enter the STARTED state if there are at least one client is in the

CALIBRATED state. The server will detect the laser dots and transform the coordinates
of the detected laser dots from the camera space to the screen space. The transformed dot
positions will be sent to the corresponding client if the client is connected. If the client is
not connected, the transformed dot positions will not be sent. However, when the server
in the STARTED state, if a CALIBRATED client establishes a connection with the
server and still maintains the CALIBRATED state, the transformed dot positions will
start to be sent to the client. A server in the STARTED state can go into the STOPPED
state at request of the user.

4.2 Communication between Laser Server and Client

When the Laser server is started, it first reads the configuration and calibration
information from the laser_server.ini file, if exists. It then performs the Winsock TCP/IP

24

server procedure: WSAStartup, socket, bind, and listen. To combine the socket input with
the user input, the server uses WSAAsyncSelect to ask for MSG_WINSOCK (a user-
defined message) to be sent whenever there is a connection request from a client. When a
client is started, it reads the server’s IP address and the port number from laser_client.ini,
and performs the connection procedure: WSAStartup, socket and connect. When a
connection request is made from a client, the server will receive the MSG_WINSOCK
message. When processing the MSG_WINSOCK message, the server accepts the
connection, and just puts the accepted socket in the NewLaserServers list to be processed
later. In this software, the accepted socket is blocking while the listening socket is non-
blocking. Since the accepted socket inherits the non-blocking mode from the listening
socket, we have to use WSAAsyncSelect and ioctlsocket to convert the mode from non-
blocking to blocking.

In our design, we use a three-tier architecture: NewLaserServers, CandDisplay, and

ConfDisplay. As mentioned in the previous paragraph, NewLaserServers contains the
newly accepted sockets (or connections). From time to time, the server calls the
ProcessNewLaserServers function to process these newly accepted connections. In
ProcessNewLaserServers, the server asks the client to send its display information
including the number of monitors in the display and the geometry of each monitor. Once
the display information is received, the display at the client end of the connection
becomes a candidate display to be kept in CandDisplay. A candidate display can be
configured and become a member of ConfDisplay. When a display is configured, each of
its monitors is associated with a camera. All members of ConfDisplay will be saved into
laser_server.ini under the DISPLAYS section to be read whenever the server is restarted.
Each monitor of a configured display can then be calibrated. If the calibration is
successful, the calibration information will also be saved into the laser_server.ini file.
Whenever all the monitors of a configured display are calibrated, the display is
calibrated. Once a display is calibrated, the corresponding client is able to receive the
laser dots from the server if a connection exists between the server and the client.
Sometimes although the client’s display is configured and calibrated, the client may not
be connected to the server. This could happen when the server just starts up or when the
connection is lost. Under this situation, when a connection is established from the client,
the ProcessNewLaserServers function moves the client’s display to ConfDisplay without
going through CandDisplay, and the laser dots can be sent to the client immediately.
Therefore if a client is stopped and restarted, the client can receive laser dots
immediately. The server detects the lost of connection when sending or receiving its
messages. From time to time, the server also calls the ProcessClosedSockets() function to
check the connections. The ProcessClosedSockets() function uses the LINK-TEST
message (to be described next) to verify the socket (or the connection) is still valid.

The Laser client is kind of passive in our design. After the connection is made to the
server, the client creates a thread to wait for messages from the server. Currently, the
following commands are used between the Laser server and the Laser client.

• LINK_TEST: to test whether the client and the server is still connected.

25

• DISPLAY_INFO: to send the client’s display information to the server.
• DRAWING_CMD: to send a drawing command to the client. Currently there are

three drawing commands: BLANK_SCN for drawing a blank screen, SOLID_RECTS
for drawing a sequence of solid rectangles, and SOLID_DOTS for drawing a
sequence of solid dots. If the drawing canvas does not exist at the client, the client
will first create a full-screen canvas before drawing anything.

• DRAWING_END: to inform the client of the end of drawing. The client will destroy
the canvas if it has not done so.

• DRAWING_ACK: to be sent by the client to inform the server that the drawing
command has been executed.

• LASER_DOTS: to send the detected laser dots to the client.
• STATE_SET: The state is maintained by the server, and the server uses this

command to set the state of the client to match its state.

The new Laser server can work with multiple clients, and one of the clients can be

residing on the same machine as the server. When a client is residing on the same
machine as the server, the server and the client will share the same display. In this case,
the DRAWING_CMD message will not be sent. Instead, the server will perform the
drawing directly on the shared display. However, the LASER_DOTS message is still sent
through the socket. It is expected that all the clients will be connected to the server using
a local area network. The test shows the performance is satisfactory with no obvious
delay. Since all the messages in our design are small in size, TCP_NODELAY is set using
setsockopt to disable the Nagle algorithm for send coalescing.

4.3 Digital Cameras for Tracking Laser Pointers

The new Laser software uses USB 2.0 digital cameras for laser dot detection.
Specifically, the new Laser software uses three uEyeLE monochrome cameras of a
resolution of 752x480 pixels each (model: UI-1225LE-M). Figure 4.1 shows the new
camera system installed in a portable DataWall. The new camera system works with a
DataWall of a resolution of 3840x1024 pixels now. For a higher resolution DataWall, we
may need to use more cameras or higher resolution cameras.

Figure 4.1 The new camera system installed in a portable DataWall.

26

The hardware components in the new camera system include three UI-1225LE-M

cameras (http://www.1stvision.com/cameras/camera_detail.php?id=150#UI-1225LE-M),
three Tamron 13VM2812AS lenses (http://www.spytown.com/13vm2812as.html), and
three USB 2.0 cables (http://www.cdw.com/shop/products/default.aspx?EDC=376238).
There is only one cable (the USB cable) attached to a camera in the new system instead
of three (sync, video, and power cables) in the previous system.

Because the new camera system involves multiple cameras, the software needs to
create multiple threads to synchronize the capturing of multiple images, to detect the laser
dots from the captured images, and to merge the detected laser dots. Figure 4.2 illustrates
the interaction and synchronization among these different threads. The process starts with
calling the is_FreezeVideo function to ask the three cameras to digitize the images. When
a camera completes the digitization of an image, the camera sends an
IS_SET_EVENT_FRAME event which will wake up the Laser Dot Detection thread
responsible for detecting the laser dots in the image. The double buffer technique is used
to store the digitized images; therefore the Laser Dot Detection thread can send the Ready
signal to the Trigger thread before processing the image. In this way, the image
digitization and the image processing can be done in parallel to increase the frame rate.
When an image is processed, the Laser Dot Detection thread will let the Laser Dot
Merger thread know the laser dots from its camera are ready. When the Laser Dot Merger
thread receives all three sets of laser dots, it will eliminate the duplicates in the sets and
merge these three sets into one. Concurrently, when the Trigger thread receives the
Ready signals from all the three Laser Dot Detection threads, it issues new digitizing
commands to the three cameras again, and the process repeats.

We tested the new camera system on a DELL OptiPlex 745 mini-tower. The 745

mini-tower has an Intel’s ICH8 south bridge that consists of two on-board USB 2.0
controllers. When three cameras are connected to the same controller, we are able to set a
pixel clock of 17MHz to each camera. With the 5ms exposure time, we are able to
achieve a frame rate of 29.7 frames per second. When splitting the three cameras to the
two controllers, we set a pixel clock of 25 MHz to all the three cameras and achieve a
frame rate of 38.7 frames per second. The test result shows the three camera system will
work when installed on any desktop or laptop with an on-board USB 2.0 controller.

27

http://www.1stvision.com/cameras/camera_detail.php?id=150#UI-1225LE-M
http://www.spytown.com/13vm2812as.html
http://www.cdw.com/shop/products/default.aspx?EDC=376238
http://www.1stvision.com/cameras/camera_detail.php?id=150#UI-1225LE-M

Figure 4.2 The interaction and synchronization among different threads.

4.4 User Interface for Laser Software

Once the Laser sever is started, a tray icon will appear on the task bar. The tray icon
will have a pop-up menu as shown in Figure 4.3. It consists of Camera Check, Auto
Configuration, Camera Configuration (manual), Auto Calibration, Camera Calibration
(manual), and Start Laser Server menu items.

Figure 4.3 The pop-up menu for the Laser server.

The Camera Check allows the user to check whether the camera is properly
positioned and to find the intensity difference between a laser dot and the white

Digitizing CMD

Ready

Laser Dots

Image Image Image

Laser Dot
Detection (1)

Laser Dot
Detection (2)

Laser Dot
Detection (3)

Laser Dot
Merger

Trigger

28

background. If a camera is already configured to a monitor, the software will draw, on the
corresponding monitor, a wire rectangle to indicate the boundary of the monitor with a
solid square at each corner, as shown in Figure 4.4. If the camera is not configured, no
rectangle or square will be drawn. However, the red wire rectangle that indicates the
camera image size will always be drawn. One purpose of the camera check is to make
sure the monitor image is positioned within the red rectangle. If the camera is configured,
make sure the wire rectangle image which indicates the monitor boundary is positioned
within the red wire rectangle. If the camera is not configured, the job is a little hard to put
the monitor image within the red rectangle. It is recommended a three-step procedure be
followed to properly position the camera. In the first step, use Camera Check to roughly
aim the camera at the corresponding monitor. In the second step, perform Auto
Configuration. Once the cameras are configured by Auto Configuration, use Camera
Check again to make sure the image of the white wire rectangle is within the red wire
rectangle. The second purpose of Camera Check is to find a threshold to separate the
laser dot and the white background. That is why four solid squares are drawn at four
corners. Usually the laser dot is very bright and has an intensity of 255. Therefore, the
threshold is usually set at 255. If the white solid rectangles also show an intensity of 255,
the camera iris has to be closed down to reduce the intensity of the white background..
The mouse and arrow keys can be used to move the small red-cross to inspect the pixel
intensity within the image. The determined threshold is to be put into the laser_server.ini
file manually.

Figure 4.4 Camera check.

The Auto Configuration is to associate a camera with the monitor it is watching
automatically. For each monitor, we draw one big solid circle and one small solid circle
on it, and ask which camera can see both circles. If a camera can see both circles, the
camera is associated with the corresponding monitor. In addition, the camera’s
orientation is determined by the relative location of the big and small circles within the
image. Once the Auto configuration is done, its result can be verified using the Camera

29

configuration as shown in Figure 4.5. Of course, the Camera configuration can be used
to manually configure the cameras as the name implies.

Figure 4.5 Camera configuration.

After the cameras are configured, the Auto Calibration can be used to calibrate all the
configured cameras. For a configured camera, if you see a dot array with green
coordinates as shown in Figure 4.6, the calibration of that camera is successful.
Otherwise, a manual calibration may be needed. At camera calibration, the intensity
difference between the white dots and the black background is important. Again you can
use the mouse and arrow keys to move the small red-cross to inspect the pixel intensity
within the image. Once the cameras are calibrated, the server can start the laser dot
detection and distribution after the Start Laser Server menu is clicked.

30

Figure 4.6 The image after a successful camera calibration.

4.5 Soft Keyboard for Text Entry

With the help of a MRW (Mouse Resource Window) as shown in the top part of
Figure 4.7, a laser pointer can act just like a mouse. However, a user is not able to type in
even a single line of text such as a URL (Uniform Resource Locator) into a web browser.
To address this issue, we added a soft keyboard, shown in the bottom part of Figure 4.7,
for use with a laser pointer.

Figure 4.7 A soft keyboard for use with a laser pointer.

To save the DataWall space, the soft keyboard will not show by default. To show the

keyboard, click the keyboard icon in the MRW with a laser pointer, and to hide the

31

keyboard, click the icon again. The starting position for the keyboard when it is shown is
just below the MRW. To move the keyboard to another location, a user can use the laser
pointer to click a non-key position and drag the keyboard to the desired location. To type
in a character, a user needs to click the laser pointer at the corresponding key position.

The soft keyboard performs similarly to the soft keyboard provided with a PDA for

use with a stylus. There are three kinds of keys on the soft keyboard: regular keys such as
letters or digits, permanent state change keys such as Caps, and temporary state change
keys such as Shift, Ctrl or Alt. When a temporary or permanent state change key is
clicked, the new key state will be recorded, and the keyboard will reflect the state change.
The state change can be reversed by clicking the same key again. When a regular key is
clicked, the virtual key codes for these recorded key states and the regular key will be
sent to the corresponding application. The temporary key states will be cleared after a
regular key is clicked and processed.

5. Multiple Computer Interaction and Annotation

A mouse is usually limited within the computer to which it is attached. If you have
two computers on the desktop, you need two sets of mice and keyboards to interact with
these two computers. In this project, we define a virtual computer as consisting of
multiple physical computers, and use the same set of mouse and keyboard to interact with
all the physical computers in a virtual computer. To achieve this, we developed a mouse
filter driver as well as a keyboard filter driver. A mouse filter driver can be installed with
a mouse. Once the filter driver is installed, we can intercept all the mouse events
generated from the mouse. We also represent the mouse with a software cursor, and use
the intercepted mouse events to drive the software cursor. With the help of socket
communication between computers, we are able to move the software cursor between
computers. In this way, the software cursor can interact with multiple computers. With
the mouse filter driver, we also developed annotation by multiple users across multiple
computers. Figure 5.1 illustrates how the mouse filter driver is used for interaction and
annotation within a virtual computer consisting of two physical computers.

32

Figure 5.1 Mouse filter driver for multiple computer interaction and annotation.

5.1 Mouse Filter Driver
A filter driver for an input device is the best way to capture input events and pass

them to an application on a Windows platform. Usually an application sends custom
device I/O control requests (IOCTLs) to an added filter driver to retrieve the input events.
The filter driver is able to get the custom requests as long as it is the upper-most filter in
the stack, because that is the one that handles the request first. If another filter driver is
added on top of it, the custom requests could be rejected by the filter above it. To address
this issue, we create a standalone named device object, called control device object, to
handle communication with the application. For an application to access the named
device object, we need to create a user-visible interface either by a symbolic link to the
device object name or a unique GUID. The application can open the standalone device
object via the symbolic link name or the unique GUID with the CreateFile function and
use the DeviceIoControl function to issue custom IOCTLs that will be sent directly to the
control device object. Figure 5.2 shows the filter driver with two device objects. Device
object 1 (unnamed) in the figure is inserted in the driver stack. It filters IRPs from up and
captures input events from bottom. Device object 2 (named) reads the captured input
events captured by device object 1, and sends them out of kernel to an application. There
is a tool for us to view all the active device objects associated with drivers in Windows.
Figure 5.3 is a screen shot of the installed mouse filter driver with two device objects.

33

Figure 5.2 The filter driver with two device objects.

Figure 5.3 A screen shot of the installed mouse filter driver with two device objects.

34

5.2 Mouse Event Acquisition
The API function for a user-mode application to send an I/O control request to the

filter driver is DeviceIoControl. The application first creates a handle to the device by
calling CreateFile function in the following manner.

Handle = CreateFile("\\\\.\\MIoctl", GENERIC_READ │ GENERIC_WRITE,

0, NULL, OPEN_EXISTING, flags, NULL);

Then, the application uses DeviceIoControl to exchange data in and out of the kernel
with InputData and OutputData buffers as follows.

DeviceIoControl(Handle, Code, InputBuffer, InputLength,

 OutputBuffer, OutputLength, &BytesReturned, NULL);

The Code argument to DeviceIoControl is a control code that indicates the control
operation to be performed and how the input buffer and output buffers can be accessed in
the kernel. That is a 32-bit numeric constant (DWORD) that can be defined using the
CTL_CODE preprocessor macro that is part of both the DDK and the Platform SDK.
Both the application and the driver should have the code definition in their header files.
The least significant 2-bits in the code (i.e. the third argument to CTL_CODE) indicate
the buffering method that tells how the filter driver can access the input buffer and output
buffers supplied by the application. There are four possible valid values:
METHOD_BUFFERED, METHOD_OUT_DIRECT, METHOD_IN_DIRECT,
METHOD_NEITHER. The sample IOCTL in DDK under the directory of
src\general\ioctl demonstrates how to use these four different types. Currently we are
using METHOD_BUFFERED. With METHOD_BUFFERED, the I/O Manager
allocates a kernel buffer of the size that is the maximum of InputLength and
OutputLength for both input and output. Before the corresponding major function is
called, the data in InputBuffer is copied into the allocated kernel buffer. Before the major
function is returned, we put whatever we want to send back to the application, i.e. the
captured mouse input events, in the allocated kernel buffer. The I/O manager will copy
the data from the kernel buffer to OutputBufer after the major function returns. The
number of bytes put in the kernel buffer needs to be indicated in the IoStatus.Information
field of the IRP which is in turn put in the BytesReturned variable by the I/O manager.
That is how an application uses the DeviceIoControl to get the data into and out of the
filter driver.

For efficiency, we allow the application to define the buffer size to be retrieved from

the filter driver with the I/O control code IOCTL_SET_BUFSIZE. To set the buffer size
to be read from the filter driver, we use this function with the size value.

DeviceIoControl (handle, (DWORD)IOCTL_SET_BUFSIZE,
 &size, sizeof(int), NULL, 0, &bytesReturned, NULL);

35

The keyboard filter driver is designed with the same principle as that used in the
mouse filter driver. No detail is to be given here.

5.3 Interaction and Annotation
In our system, every participant machine could have an option to use a set of mouse

and keyboard with their filter drivers installed. If the option is off, this machine will only
be controlled by the other participants. If the option is on, the system creates a software
cursor. The software cursor is able to go beyond its own physical computer and interact
with any computer within the virtual computer, which means the software cursor from
machine A could be on machine B and do whatever B’s system cursor does.

The mouse and keyboard data packages obtained from filter drivers need to be

converted when we use the SendInput function to synthesize keystrokes, mouse motions,
and button clicks. The data structure obtained from the mouse filter driver is:

typedef struct MOUSE_INPUT_DATA {

 USHORT UnitId;

 USHORT Flags;

 union {

 ULONG Buttons;

 struct {

 USHORT ButtonFlags;

 USHORT ButtonData;

 };

 };

 ULONG RawButtons;

 LONG LastX;

 LONG LastY;

 ULONG ExtraInformation;

} MOUSE_INPUT_DATA, *PMOUSE_INPUT_DATA;

LastX and LastY indicate the increment of mouse movement in horizontal and

vertical directions respectively. ButtonFlags tells the state transition of mouse buttons in
the following macros.

MOUSE_LEFT_BUTTON_DOWN The left mouse button changed to down.

MOUSE_LEFT_BUTTON_UP The left mouse button changed to up.

MOUSE_RIGHT_BUTTON_DOWN The right mouse button changed to down.

MOUSE_RIGHT_BUTTON_UP The right mouse button changed to up.

MOUSE_MIDDLE_BUTTON_DOWN The middle mouse button changed to down.

36

MOUSE_MIDDLE_BUTTON_UP The middle mouse button changed to up.

MOUSE_BUTTON_4_DOWN The fourth mouse button changed to down.

MOUSE_BUTTON_4_UP The fourth mouse button changed to up.

MOUSE_BUTTON_5_DOWN The fifth mouse button changed to down.

MOUSE_BUTTON_5_UP The fifth mouse button changed to up.

MOUSE_WHEEL Mouse wheel data is present.

MOUSE_HWHEEL Mouse horizontal wheel data is present.

On the other hand, the data structure for simulating a mouse event is defined as:

typedef struct tagMOUSEINPUT {
 LONG dx;
 LONG dy;
 DWORD mouseData;
 DWORD dwFlags;
 DWORD time;
 ULONG_PTR dwExtraInfo;
} MOUSEINPUT, *PMOUSEINPUT;

Where dx and dy indicate the cursor movement and dwFlags indicates the status of
buttons. The keyboard data also needs to be converted. The data structure read from the
keyboard filter driver is:

typedef struct _KEYBOARD_INPUT_DATA {

 USHORT UnitId;

 USHORT MakeCode;

 USHORT Flags;

 USHORT Reserved;

 ULONG ExtraInformation;

} KEYBOARD_INPUT_DATA, *PKEYBOARD_INPUT_DATA;

The data structure for simulating a keyboard event is:
typedef struct tagKEYBDINPUT {

 WORD wVk;

 WORD wScan;

 DWORD dwFlags;

 DWORD time;

 ULONG_PTR dwExtraInfo;

} KEYBDINPUT, *PKEYBDINPUT;

37

The wScan variable in KEYBDINPUT needs to be assigned with the value of
MakeCode in KEYBOARD_INPUT_DATA.

A software cursor is in the interaction mode by default. It enters the annotation mode

by clicking the middle mouse button. When the annotation mode starts, a full screen
image is captured and put into a memory device context called memDC. (memDC have a
canvas of the same size as the full screen.) The content of memDC is then saved into a
file. In the annotation mode, a user can scribble by holding down the left button.
Whenever the cursor moves with the left button down, a line will be drawn directly into
the screen with the device context obtained with the GetDC(NULL) function and into
memDC. To turn of the annotation mode and go back to the interaction mode, the user
only needs to click the middle button again. At that time, The content of memDC will be
saved again into a different file as the result of the annotation.

6. Copy and Paste between Two Computers

A software cursor corresponds to an actual mouse and is uniquely identifiable. A user
can copy an item from an application running on a computer and store it with the
software cursor. Then the user can move the software cursor to another computer and
paste the stored item to the second application on the second computer. Currently we can
copy both text and files between two computers.

6.1 Keep Clipboard with Software Cursor

In a today’s operation system, the clipboard is associated with a computer so that

multiple applications running on the same computer can exchange the information
through the shared clipboard. In our implementation, a user can operate a software cursor
and a clipboard can be associated with a software cursor. The clipboard associated with a
computer is referred to as a machine clipboard, and the one with a cursor is called a
cursor clipboard hereafter. Since we made no changes to the operating system or the
applications running on the operating system, our cursor clipboard implementation is still
based on the machine clipboard. Whenever the machine clipboard is changed, its new
content may be copied to the cursor clipboard of the software cursor active on the
machine. To paste the content of a cursor clipboard to an application, the cursor clipboard
content has to be copied to the machines clipboard first. When a clipboard is kept with a
software cursor, different software cursors can have different clipboards. Figure 6.1
illustrates three software cursors with three different clipboards.

38

Figure 6.1 Three software cursors with three different clipboards.

To monitor whether there is any change to the machine clipboard, we added the

software cursor as a clipboard viewer using the SetClipboardViewer function. Before the
software cursor is destroyed, it needs to be removed from the chain by calling the
ChangeClipboardChain function. When the software cursor is in the chain, it must
process the clipboard messages WM_CHANGECBCHAIN and WM_DRAWCLIPBOARD,
and call the SendMessage function to pass these two messages to the next window in the
clipboard viewer chain.

Whenever there is a change to the machine clipboard, the WM_DRAWCLIPBOARD
message will be sent to the clipboard viewer. The clipboard viewer can retrieve the
content of the machine clipboard and try to copy it to the cursor clipboard if it determines
that the machine clipboard was not changed by itself using the GetClipboardOwner
function. Whenever a user clicks a software cursor on a computer, the software cursor
will be actively associated with the corresponding machine if the association does not
exist before. At the same time, the content of the cursor clipboard will be sent to the
corresponding machine clipboard. After that, the paste operation will use the new
machine clipboard content which is the same as the cursor clipboard of the active
software cursor.

ABC UVW XYZ

39

6.2 Copy Files between Two Computers

With the software cursor, we can copy files between two machines. A user can
accomplish file copying in the following steps.

1). Open a Windows Explorer on the source machine.
2). Select files and/or directories to be copied.
3). Copy (using Ctrl+C for example) the selected items to the software cursor.
4). Move the software cursor to the target machine.
5). Open a Windows Explorer on the target machine.
6). Go to the target directory.
7). Paste (using Ctrl+V for example) the files and/or directories recorded on the software

cursor to the target directory.

To copy and paste files between two computers, we define the data format for the

cursor clipboards as shown in Figure 6.2. The count field indicates the number of formats
for the clipboard. For each format, it consists of the format name, the length of the data,
and the actual data. Currently, we implemented two formats, CF_TEXT and CF_HDROP.
The CF_TEXT format is for text copy and paste, and its data is a NULL-terminated
string. The CF_HDROP format is for file copy and paste, and its data is a list of files and
directories. Each file or directory is NULL-terminated and the list is also NULL-
terminated. Therefore, the CF_HDROP data is composed of multiple NULL-delimited
strings that are ended with a double NULL terminator. The IP_Addr field indicates the
clipboard source. Later, the target machine can use the IP_Addr and Port fields to
retrieve the files using the protocol described in Section 6.3.

Figure 6.2 The data structure for cursor clipboards.

Count (n)

Format 1 Length 1 Data 1

Format 2

Format n

Length 2

Length n

Data 2

Data n

IP_Addr Port

40

Whenever there is a change to the machine clipboard, the WM_DRAWCLIPBOARD

message will be sent to all the clipboard viewers. Our clipboard viewer will enumerate all
the formats using EnumClipboardFormats. We are only interested in two formats,
CF_TEXT and CF_HDROP. If the format is of CF_HDROP, we use the
GetClipboardData function to get the HDROP handle, and then use the DragQueryFile
function to get all the path names from the HDROP handle. The path names along with
the machine IP address and the port number of the file transfer service will be packed as
shown in Figure 6.2 and stored with the software cursor. If a user selects a list of files and
directories and performs a copy operation in Windows Explorer, the path names for these
files and directories along with the machine IP address and the service port number will
be saved into the cursor clipboard under the CF_HDROP format.

Whenever the software cursor is associated with a new computer, the software cursor

needs to set the cursor clipboard into the machine clipboard. However, each association
does not always lead to a paste operation. If there is no paste operation, there is no need
to transfer files. To be efficient, we adopted delayed rendering. Specifically, we use
SetClipboardData to set the CF_HDROP data to NULL. Whenever there is a paste
operation, the WM_RENDERFORMAT message with the CF_HDROP format will be
sent to the owner. The owner then can make a connection to the server using the IP
address and the service port number. Once the connection is established, the owner (i.e.
the client) can send the pathnames one by one to request the files using the simple file
transfer protocol described in Section 6.3. The received files will be saved in a temporary
directory. At the same time, all the pathnames are mapped to reflect their new locations
under the temporary directory. The mapped path names prefixed by a DROPFILES
structure will then be set into the CF_HDROP format of the machine clipboard using
SetClipboardData. At this time, the corresponding files will be transferred from the
temporary directory into the target directory. Therefore, if a user performs a paste
operation in Windows Explorer, the files recorded in the corresponding software cursor
will be transferred from the source to the target machine and directory. This is how the
files are pasted to the target machine and directory using the software cursor.

Whenever there is an owner change to the machine clipboard, made by the new

owner using the EmptyClipboard function, the WM_DESTROYCLIPBOARD message is
sent to the previous owner. At that time, the previous owner can delete the files under the
temporary directory.

6.3 Simple File Transfer Protocol

To facility file transferring between two computers, we implemented a simple file
transfer protocol using TCP/IP. The file transfer server needs to run on any physical
computer within a virtual computer because any computer with the virtual computer can
be the source of file transferring. The server listens on a default port of 10004. When a

41

client makes a connection to the server, the server will spawn a thread to handle the file
transfer requests from the client. The file transfer request is of the (PATH_NAME, length,
pathname) form. The pathname can be a file name or a directory name on the server. The
client does not need to know the type of pathname. If the pathname is determined to be a
file at the server, the server will retrieve the file and send it to the client. Specifically, the
reply starts with the (FILE_NAME, length, filename) packet followed by a number of
(DATA_FILE, length, data) packets depending on the file size. Please note that the last
DATA_FILE packet always has length=0 to indicate the end of the file. To be consistent
with the directory transfer case, the server sends the END_LIST packet that carries no
parameter to indicate the end of reply. When the client receives the FILE_NAME packet,
it splits the filename into the directory and file parts, and then creates the directory under
a temporary directory using SHCreateDirectoryEx and creates the file using CreateFile.
Please note that CreateDirectory may not work because some immediate directories have
to be created too. The client will write the received DATA_FILE packets to the file until
the (DATA_FILE, 0) packet arrives. At that time, the client closes the file.

If the pathname in (PATH_NAME, length, pathname) is a directory, the server will

retrieve and send the whole sub-tree rooted at pathname. The server uses the
FindFirstFile, FindNextFile and FindClose functions to enumerate all the files and
subdirectories under a requested directory. Please note that the files and directories
enumerated are relative names and include two special directories “.” and “..”. For each
file, the server will send the file using the protocol described in the previous paragraph,
i.e., a FILE_NAME packet followed by a bunch of DATA_FILE packets. For each
directory other than “.” or “..”, the server will send (DIR_NAME, length, dirname)
packet, and recursively enumerate all the files and subdirectories under the directory of
dirname. On receiving the DIR_NAME packet, the client will create a corresponding
directory using SHCreateDirectoryEx. The END_LIST packet is sent by the server to
indicate the end of reply.

42

